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A three-dimensional shear-driven turbulent boundary layer over a flat plate generated
by moving a section of the wall in the transverse direction is studied using large-
eddy simulations. The configuration is analogous to shear-driven boundary layer
experiments on spinning cylinders, except for the absence of curvature effects. The
data presented include the time-averaged mean flow, the Reynolds stresses and their
budgets, and instantaneous flow visualizations. The near-wall behaviour of the flow,
which was not accessible to previous experimental studies, is investigated in detail. The
transverse mean velocity profile develops like a Stokes layer, only weakly coupled to
the streamwise flow, and is self-similar when scaled with the transverse wall velocity,
Ws. The axial skin friction and the turbulent kinetic energy, K , are significantly
reduced after the imposition of the transverse shear, due to the disruption of the
streaky structures and of the outer-layer vortical structures. The turbulent kinetic
energy budget reveals that the decrease in production is responsible for the reduction
of K . The flow then adjusts to the perturbation, reaching a quasi-equilibrium three-
dimensional collateral state. Following the cessation of the transverse motion, similar
phenomena take place again. The flow eventually relaxes back to a two-dimensional
equilibrium boundary layer.

1. Introduction
Many engineering flows, such as those on swept wings of aircraft, rotating hubs

of propellers, missiles, and rotating disks, at junctions of rotating and stationary
walls of fluid machinery, and inside curved ducts or bends etc. are three-dimensional
in nature. Thus, a study of three-dimensional turbulent boundary layers (TBLs) is
of great practical relevance. Three-dimensional TBLs can be classified (Bradshaw
1987) as being either ‘skew-induced’ (Prandtl’s first kind of secondary flow), if the
three-dimensionality is introduced by a moving surface (‘shear-driven’) or by a cross-
stream pressure gradient (‘pressure-driven’), or ‘stress-induced’ (Prandtl’s second kind
of secondary flow). Reviews of recent work on 3DTBLs can be found in Johnston
(1970), Fernholz & Vagt (1981), Cousteix (1986), Bradshaw (1987), Sendstad & Moin
(1992), and Johnston & Flack (1996).

This investigation concentrates on the study of a three-dimensional shear-driven
TBL. In nature, shear-driven flows occur on rotating hubs of propellers, missiles,
and rotating disks, and at junctions of rotating and stationary walls in fluid ma-
chinery. Unlike pressure-driven 3DTBLs generated by the presence of an obstacle,
no streamwise pressure-gradient is present in shear-driven TBLs; thus, the effects of
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three-dimensionality can be completely separated from those of acceleration. 3DTBLs
free of adverse pressure gradients can be generated by introducing mean streamwise
vorticity at the wall (i.e. by applying an impulsive spanwise motion to the wall). In
the absence of additional sources of three-dimensionality, all three-dimensional effects
grow outwards from the wall.

Several experimental investigations of shear-driven boundary layers of this type
have been carried out. In most of them the geometry is a cylinder with a spinning
section. The measurements can be carried out either on the spinning part, to study
the response of the boundary layer to the imposition of the three-dimensionality, or
else downstream of it, to investigate the return to equilibrium of the boundary layer.
Bissonnette & Mellor (1974) studied the flow over the spinning section, and found
that the flow was collateral (i.e. the direction of the mean velocity remained the same
at each y) near the wall, while away from the wall the flow became three-dimensional.
The streamwise wall stress increased slightly over the spinning section of the cylinder,
while the spanwise wall stress increased over the moving part, and decreased on the
stationary part. They found that the Reynolds-stress angle lagged behind the mean-
velocity-gradient angle and that the eddy viscosity in the spanwise direction was
significantly smaller than the streamwise one, an effect that they argued was at least
in part due to the curvature. This result suggests that eddy-viscosity models for the
Reynolds-averaged Navier–Stokes equations may have difficulties in this type of flow.
Following Clauser (1954), they used a coordinate system that moved with the wall in
the spanwise direction and was aligned with the free-stream relative velocity (U2∞+W 2

s )
(where Ws is the wall velocity and U∞ the free-stream velocity), and found that the
slope of the logarithmic law was considerably lower than in two-dimensional flows.

Lohmann (1976) used larger surface-to-free-stream velocity ratios in his spinning-
cylinder experiments. He found that the transverse velocity boundary layer grew at a
rate approximately proportional to x1/2, where x was measured from the beginning
of the moving section. In the region close to the wall, the transverse mean velocity
distribution and wall-stress component attained an asymptotic state in an axial
distance of about ten initial boundary layer thicknesses. The Reynolds stresses were
substantially increased, which led to significant differences in the streamwise mean
velocity profiles: a velocity deficit developed that propagated outwards. The layer was
collateral throughout the moving region. For the lower wall velocity, Ws/U∞ = 1.45,
the axial wall stress first increased, then decreased slightly and finally continued
to increase toward a new steady state; at the higher wall speed, Ws/U∞ = 2.2, on
the other hand, no decrease was observed, although the wall stress had a constant
region downstream of the leading edge of the moving section. The energy in the
large-scale structures initially decreased, suggesting that the three-dimensionality also
has an effect on the distribution of scales in the wall region. As in the experiment
of Bissonnette & Mellor (1974), the stress angle was found to lag the mean-velocity-
gradient angle.

A further experimental and computational study was performed by Higuchi &
Rubesin (1979). They studied the cross-flow on the stationary section of the cylinder
immediately downstream of a spinning section. Their computations showed that
models that accounted for the anisotropy of the eddy viscosity predicted the cross-
flow better than those that used a scalar eddy viscosity.

Continuing the work of Higuchi & Rubesin (1979), Driver & Hebbar (1987)
measured velocity and Reynolds stresses in the boundary layer on a cylinder with
a rotating section using laser-Doppler velocimetry (LDV). Measurements were taken
primarily on the stationary section where the flow was relaxing from a three-
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dimensional boundary layer back to a two-dimensional state. In agreement with
the previous investigations, they found that in this recovery region the eddy viscosity
became anisotropic, especially in the inner region, where the stress lags the mean ve-
locity gradient. They also found a local minimum of the Reynolds shear stress 〈u′v′〉
near the wall (〈·〉 denotes an ensemble average and a prime the velocity fluctuations),
whereas the structure parameter a1 = (〈u′v′〉2 + 〈v′w′〉2)1/2/〈u′iu′i〉 increased slightly at
the beginning of the recovery region. Their measurements were concentrated in the
recovery region, where the flow returns to a two-dimensional, equilibrium state, and
their first measurement point was at y+ = 40, where most of the flow turning has
already occurred. More complete measurements using the same experimental setup
were later collected by Driver & Johnston (1990).

A related flow was studied by direct simulation (DNS) of the Navier–Stokes
equations by Moin et al. (1990). Starting from a fully developed two-dimensional
plane channel flow, they suddenly imposed a spanwise pressure gradient. A transverse
boundary layer developed at the wall, and propagated outwards. They observed a
pronounced reduction of the turbulent kinetic energy following the imposition of
the transverse pressure gradient. This decrease was attributed to a decrease in the
production of turbulent kinetic energy, which was, in turn, caused by suppression
of the pressure–strain mechanism for inter-component energy transfer: the decrease
of this term caused a suppression of the wall-normal Reynolds stress 〈v′2〉, and a
decrease in the production of the shear stress 〈u′v′〉. Durbin (1993), however, pointed
out that a reduced redistribution would also probably result in an increase of the
streamwise Reynolds stress 〈u′2〉, which is contrary to the observations. The structure
parameter, a1, was found to decrease as the transverse pressure gradient was applied.
They also observed the lag between the Reynolds shear stress angle and the mean
velocity gradient angle.

Later, Sendstad & Moin (1992) used this database (as well as additional calculations
in similar configurations) to study the response of the turbulent eddies to the three-
dimensionality. They found that the reduction of the Reynolds shear stress 〈u′v′〉 is
due to a weakening of the ejection and sweep events. They also observed a breakup
of the turbulent streaks during the initial period.

Coleman, Kim & Le (1996) performed direct numerical simulations (DNS) of shear-
driven channel flows. The flow was obtained by an impulsive spanwise motion of the
lower wall of a plane channel in fully developed turbulent flow. A transverse boundary
layer developed in time. Their conclusions are consistent with the experimental
and numerical findings related above. They also observed an initial decrease of
the streamwise wall stress, which later recovers. The turbulent kinetic energy also
decreased initially. They claimed that the most significant (but not the only) effect of
shear-driven three-dimensionality is a modification of the near-wall streaks and/or
of the interaction between the streaks and quasi-streamwise vortices, rather than a
direct modification of the vortices.

These studies have revealed a few salient features of such flows: the shear-stress
angle lags the strain angle, the eddy viscosity is anisotropic, the turbulent kinetic
energy and the streamwise wall shear initially decrease as a consequence of structural
changes in the coherent eddies in the wall layer; the structure parameter a1 decreases.
Simple low-level models based on an isotropic eddy viscosity, which forces the
Reynolds-stress angle to be in phase with the velocity-gradient angle, cannot in
general be assumed to be valid for this flow. Indeed when such models were applied
to three-dimensional shear-driven or pressure-driven flows, they yielded poor results
(Fannelop & Krogstad 1975; Bradshaw, Launder & Lumley 1996). Ölçmen & Simpson
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(1993) reviewed the performance of four different algebraic eddy-viscosity models and
concluded that no model could perform well in all the cases studied. In general, models
that accounted for the anisotropy of the eddy viscosity (Rotta 1979) performed better;
even in those cases, however, the anisotropic constants needed adjustment for different
flows. Some of the features of 3DTBLs, such as the reduction in the Reynolds shear
stress, were not captured at all by any of these models.

A Reynolds stress model with a modification to the ε equation (Durbin 1993)
was shown to reproduce some of the features observed by Moin et al. (1990) in a
three-dimensional turbulent channel flow, most importantly the drop in the turbulent
kinetic energy. Based on his results, Durbin (1993) concludes that the primary cause
of the three-dimensional effect may be the increase in the rate of energy dissipation
(ε), which causes the decrease in the turbulent kinetic energy. Indeed, Moin et al.
(1990) saw an increase of ε around y+ ' 10, although this was accompanied by a
reduction close to the wall. Parneix & Durbin (1997) also obtained good results in
simulations of three-dimensional boundary layers using the V2F model.

Despite the progress brought about by the experimental and numerical studies,
there are still several unanswered questions. Given their cost, DNS to date have
been limited to temporal evolutions, and to the early stages of the development only:
Moin et al. (1990) did not examine at all the recovery of the flow after the initial
decrease, and Coleman et al. (1996), whose calculations extend to times in which the
turbulent kinetic energy and wall shear have recovered the two-dimensional value,
also concentrate on the initial stages. Spatially developing flows, moreover, have
only been studied experimentally, and the measurements do not provide sufficient
information on the physics of 3DTBLs in the near-wall region (where most of the
flow turning occurs) that is required to develop improved models for engineering
design and analysis.

Large-eddy simulations (LES) can play a useful role in bridging the gap between the
detailed information on the early development of the 3DBL obtained from DNS, and
the more global, but less detailed knowledge gained from the experiments. LES have
been applied with some success, recently, to three-dimensional flows (Liu, Piomelli &
Spalart 1996; Wu & Squires 1998; Huai, Joslin & Piomelli 1999), and it has been
shown that they are capable of predicting them with sufficient accuracy, and at a
smaller cost than DNS.

In the present research, LES calculations are carried out for a three-dimensional
shear-driven boundary layer over a flat plate. The configuration is similar to the
spinning cylinder studied experimentally (Bissonnette & Mellor 1974; Lohmann 1976;
Driver & Hebbar 1987; Driver & Johnson 1990); curvature effects are, however,
absent. Unlike pressure-driven three-dimensional flows, in which it is difficult to
separate the effects of three-dimensionality from those of pressure gradients, a shear-
driven boundary layer isolates the effect of three-dimensionality due to the wall
shear. In this flow all effects of three-dimensionality will grow outward from the wall,
unlike some pressure-driven flows in which inviscid skewing and streamwise pressure
gradients may affect the turbulence. Hence this work is a study of three-dimensionality
in the near-wall turbulence. The use of LES allows a detailed investigation to be
performed, using the Reynolds stress budgets in conjunction with flow visualization,
on the mechanisms that alter the structure of the turbulence, and in particular the
Reynolds stresses and the skin friction, in such flows. Despite the reduced cost of
LES compared to DNS, however, this simulation was still fairly expensive, due to
the build-up of small-scale energy-carrying eddies in the three-dimensional region of
the flow that needed to be resolved. For this reason, the Reynolds numbers of the
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experimental investigations could not be matched, and an extensive parametric study
could not be performed. This brought about some difficulty in comparing the LES
results with experimental data, as will be shown later. The problem formulation and
the numerical method are described in the next Section, followed by a description
of the problem configuration and the simulation parameters. The results will then be
presented, and some conclusions will be drawn.

2. Problem formulation
In large-eddy simulations, the flow variables are decomposed into a large-scale (or

resolved) component, and a subgrid-scale (or unresolved) one through the filtering
operation; a filtered variable is defined as

f(x) =

∫
D

f(x′)G(x, x′) dx′, (2.1)

where G(x) is the filter function and D is the computational domain. Applying
the filtering operation to the incompressible Navier–Stokes and continuity equations
yields the governing equations of motion for the large-scale velocity,

∂ui

∂t
+
∂uiuj

∂xj
= − ∂p

∂xi
− ∂τij

∂xj
+

1

Rer

∂2ui

∂xj∂xj
, (2.2)

∂ui

∂xi
= 0. (2.3)

Here p = P/ρ, P is the pressure and ρ the density of the fluid, and ui is the filtered
velocity; x1 or x, x2 or y and x3 or z represent the streamwise, wall-normal and
spanwise directions, respectively, while t represents the time. The velocities u1, u2, and
u3 in the x-, y-, and z-directions are used interchangeably with u, v, and w. Equations
(2.2)–(2.3) are non-dimensionalized by the free-stream velocity, U∞, and a reference
length δ∗r ; the reference Reynolds number is thus defined as Rer = U∞δ∗r /ν, where ν
is the kinematic viscosity of the fluid.

The coupling between the large and the small scales appears in the form of a
subgrid-scale stress tensor τij = uiuj − uiuj that needs to be modelled. Since the small
scales tend to be more universal than the large ones, their effects are commonly
modelled by simple eddy-viscosity models of the form

τij − δij τkk/3 = −2νTS ij = −2C∆
2|S | Sij , (2.4)

where νT is the eddy viscosity, δij is the Kronecker delta, Sij = (∂ui/∂xj + ∂uj/∂xi)/2

is the large-scale strain-rate tensor, |S | = (2SijS ij)
1/2, and ∆ = 2(∆x∆y∆z)1/3 is the

filter width. C is a dimensionless model coefficient that, in this work, is evaluated
by the localized version (Piomelli & Liu 1995) of the dynamic eddy-viscosity model
(Germano et al. 1991; Lilly 1992). The test filter is a top-hat filter in real space, applied
by a three-point averaging using the trapezoidal rule. The total viscosity, ν + νT , is
constrained to be non-negative to ensure numerical stability of the time integration.
In addition, the numerator and denominator of the model coefficient are smoothed
over the test-filter width by using local three-point averaging in space (Zang, Street
& Koseff 1993; Piomelli & Liu 1995). This model has been used successfully for
the prediction of three-dimensional transitional and turbulent flows (Liu et al. 1996;
Huai, Joslin & Piomelli 1997, 1999) similar to the one under investigation.

The governing equations (2.2)–(2.3) are solved using a fractional-step method
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Figure 1. Problem setup.

(Chorin 1967). For the momentum equation, fourth-order central differences are
used in the streamwise direction, x, Chebychev series in the wall-normal one, y, and
Fourier series in the spanwise direction, z. The time-advancement is performed by an
implicit Crank–Nicolson scheme for the wall-normal diffusion; all the other terms are
advanced explicitly using a compact third-order Runge–Kutta method. The Poisson
equation for the pressure is discretized in a similar manner (compact fourth-order
differences are used in x, however) and solved by an influence matrix method. The
numerical method was validated by Joslin, Streett & Chang (1993) and Huai et al.
(1997, 1999).

No-slip conditions are applied at the solid surface; periodicity is imposed in the
span-wise direction, and the perturbations are required to vanish in the free stream.
At the outflow, the buffer-domain technique (Streett & Macaraeg 1989) is used, in
which the governing equations are gradually parabolized in a buffer region appended
to the computational domain.

In the present study a three-dimensional shear-driven flow is investigated, in which
the three-dimensionality is introduced by surface shear. A two-dimensional equilib-
rium boundary layer over a flat plate is subjected to a sudden perturbation imposed
by the sideways motion of a section of the wall, as illustrated in figure 1. After
the moving section of the wall, the boundary layer is allowed to return towards an
equilibrium two-dimensional state on another stationary section.

To simulate a spatially developing turbulent boundary layer, one must use a
computational domain that is long enough in the streamwise direction that the flow
passes through a region of laminar growth, undergoes laminar breakdown/transition
and finally reaches the turbulent state desired. To accomplish the whole process
in one simulation (i.e. in one computational domain) requires a very long box
and, consequently, a large number of grid points, thus making the calculation very
expensive. A possible alternative is to break up the computational box into several sub-
domains, and perform smaller simulations on each of these sub-domains successively.
In the present simulation two computational boxes were used (see figure 1). In the
first one the flow is initially laminar and begins transition to turbulence. Incidentally,
the reference length δ∗r is the displacement thickness at the inflow of the first box.
The flow field in a plane at a chosen streamwise location after the flow transitions is
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NS LS HSC HSM HSF

Lx 360 360 360 360 360
Ly 100 100 100 100 100
Lz 25 25 25 25 25
Ws/U∞ 0.0 0.3 1.0 1.0 1.0
Nx 561 561 561 1121 1121
Ny 65 65 65 65 65
Nz 33 33 33 33 65
∆x 0.64 0.64 0.64 0.32 0.32
∆ymin 0.006 0.006 0.006 0.006 0.006
∆z 0.79 0.79 0.79 0.79 0.39
∆x+ 21.0 22.0 23.0 12.0 12.0
∆y+

min 0.19 0.20 0.22 0.23 0.23
∆z+ 26.0 27.0 29.0 30.0 15.0

Table 1. Configuration and grid parameters for the shear-driven boundary layer simulations.

saved over a sufficiently long period of time as the outflow data from this box. This
time sequence of data is used as the inflow for the simulation in box II, which is fully
turbulent. This technique has been used successfully by Huai et al. (1997, 1999). The
inflow data for Box I is taken from the simulations of Huai et al. (1997).

The domain of the 3DBL simulation is shown in figure 1. The spanwise motion
of the wall is imposed between the streamwise locations x/δ∗r = 73 and x/δ∗r = 178.
Unlike in the experiments, in which the transverse velocity was discontinuous at
the edges of the spinning section, in the computations the transverse wall velocity
had to be transitioned smoothly over a distance 18δ∗r to ensure numerical stability.
The code uses fourth-order-accurate differencing schemes in the streamwise direction,
which generate oscillations when a sharp interface is encountered. Several smoothing
distances were tried, and values lower than the one eventually used resulted either in
explosive instability of the code, or else required very small time steps, that would
have made the calculation unfeasible. Two different values of the spanwise wall-to-
free-stream velocity ratio Ws/U∞ = 0.3 and 1.0 are used, referred to as ‘low shear’
(LS) and ‘high shear’ (HS) cases. A simulation with no shear was also carried out, and
will be referred to as the ‘no shear’ (NS) case. Three simulations with Ws/U∞ = 1.0
were carried out, with a coarse, medium and fine mesh; they are referred to as HSC,
HSM and HSF cases, respectively. A summary of the simulation and configuration
parameters can be found in table 1. In this table, the grid sizes in wall variables are
based on the time- and plane-averaged friction velocity Qτ = (τ2

w,x + τ2
w,z)

1/4, where
τw,x = µ[∂U/∂y]w , τw,z = µ[∂W/∂y]w , and a capital letter denotes a time-averaged
quantity.

Grid points are evenly distributed in the streamwise (x) and spanwise (z) directions.
In the wall-normal direction, the grid points are clustered in the near-wall region.
A buffer region with a streamwise extent of 79δ∗r is appended at the end of each
computational box for the numerical treatment of the outflow.

3. Results
3.1. Simulation validation

Figure 2, which shows the spanwise velocity contours for the HSM case, can be used to
illustrate the general features of the flow field prior to a quantitative validation of the
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Figure 2. Contours of W : 20 equi-spaced contours are shown between 0.05 and 1.
Ws/U∞ = 1, intermediate grid (HSM).

simulations and analysis of the data. Five regions of the flow can be identified. Down-
stream of a two-dimensional turbulent boundary layer is a highly non-equilibrium
region following the imposition of the spanwise velocity at the wall. Subsequently, the
flow begins to re-equilibrate and approaches a collateral state. At the trailing edge
of the plate, however, a new perturbation is applied that again moves the flow away
from equilibrium. The two-dimensional equilibrium state is finally approached again.
The gradual increase of the wall velocity at the leading edge, and decrease at the
trailing edge, are also evident in the figure.

The validation of the present simulations consisted of two stages. First, a resolution
study was carried out to determine that grid-converged results had been achieved;
then, the LES results were compared with experimental data. The grid resolution
study was performed in the high-shear case. As mentioned above, three meshes were
used, coarse, medium and fine. The respective resolutions are reported in table 1.
The equations of motion were integrated for 820δ∗r /U∞; the first- and second-order
statistics obtained by averaging over only half of the sample differed from those
obtained using the full sample by less than 2%. The Reynolds-stress budgets, on
the other hand, were averaged over a shorter period, 205δ∗r /U∞. The convergence of
the Reynolds-stress statistics is less satisfactory: using only half of the sample gave
statistics that differed from those obtained from the full sample by 5–10%. All the
trends that will be discussed later, however, are independent of the sample size.

Mean velocity profiles at four representative locations in the regions described
above are shown in figure 3. The inset shows their location with respect to the
contours shown in figure 2. The velocity and distance from the wall are normalized
using the kinematic viscosity ν and the local (time-averaged) friction velocity Qτ
defined above. In the two-dimensional regions before and after the moving plate the
coarse grid is sufficient to capture the turbulent eddies. The results obtained on all
grids, therefore, collapse. In the three-dimensional and in non-equilibrium regions, on
the other hand, smaller scales are generated, and finer grids are required to resolve
the sharp gradients present in the flow. The medium- and fine-mesh results, therefore,
diverge from the coarse-grid ones. They are, however, in good agreement with each
other, indicating that the medium mesh, which has twice the streamwise resolution of
the coarse one, is sufficient to capture the essential phenomena of the flow. Spanwise
refinement of the grid results in marginal improvements only. This is due to the
fact that, in the non-equilibrium region, the flow turns very rapidly in the spanwise
direction, forming an angle approaching 50◦ to the x-axis. The streamwise streaks are
thus re-oriented in the spanwise direction, and the streamwise grid size must be small
enough to capture these structures accurately. The profiles of the trace of the resolved
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Figure 3. Mean velocity profiles for different grid resolutions. Ws/U∞ = 1.0.
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Reynolds stress tensor q2 = 〈u′iu′i〉 (here and in the following the angle brackets denote
time averaging, and a prime the resolved part of the fluctuating quantities, defined as
f′ = f − 〈f〉 = f − F) exhibit the same trends.

Two sets of experiment are relatively close to the present configuration, and supply
sufficient data for evaluation of the LES results: those by Lohmann (1976), which will
be henceforth referred to as L76, and the related ones by Driver & Hebbar (1987)
and Driver & Johnston (1990), which will be referred to as DH87 and DJ90. The
direct comparison of the LES results with the experimental data is made difficult by
several differences between the experimental and numerical configurations. First, the
experiments were carried out in cylindrical configurations, whereas the LES used a flat-
plate geometry. Since in the experiments the boundary-layer thickness is fairly small
compared to the cylinder diameter (less than 10% for L76, 18% for DH87 and DJ90),
this difference might not affect the results very significantly (see Neves, Moin & Moser
(1994a, b) for a discussion of the effects of curvature on the boundary layer statistics).
More significant is the Reynolds number difference. The experiments are respectively
at Reθ = 2420 (L76) and 6000 (DH87 and DJ90). The present calculations are at
Reθ ≈ 1100. Higher values could not be reached due to the cost of the calculations:
the medium-grid HSM case had nearly 2.5 million points, and required over 100 Cray
C-90 CPU hours to obtain converged statistics. Matching the Reynolds number of
L76 would have increased the cost of the calculation by over a factor of 10, over 150
times for DH87 and DJ90. An additional and also significant difference is created by
the smooth transition, in the calculations, between the moving and stationary sections
of the plate, which results in a more gradual development of the three-dimensional
region after the leading and trailing edges of the plate, and also in some difficulty
in comparing streamwise locations between LES and experiments. Finally, the L76
experiment had significantly higher wall velocities (Ws/U∞ = 1.45, 2.25) and a longer
moving section than any of the present calculations.

Despite these difficulties, some confidence in the LES results can be established.
First, in figure 4, the mean velocity and q2 in the two-dimensional region are compared
with the DNS data of Spalart (1988). The agreement is quite good for both quantities.
The present calculations, it should be remarked, are well-resolved LES, especially in
the two-dimensional regions of the flow, and SGS modelling errors are not expected
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to affect the results. The SGS shear stress τ12, for instance is less than 2% of the
resolved Reynolds stress on average, and never exceed 11% of 〈u′v′〉 over the entire
flow field.

In figure 5 the velocity profiles on the moving plate are compared with the
experimental data (L76). The velocity relative to the moving wall is defined as
Qr = Ui + (W −Ws)k (where i and k are the unit vectors in the x- and z-directions).
Qr is normalized by the resultant friction velocity Qτ, xLE is the location of the
leading edge of the moving plate (for the LES it was taken midway through the
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smooth transition, at x/δ∗r = 82), and δo is the thickness of the boundary layer at
xLE in the absence of plate motion. Only qualitative agreement was obtained. The
existence of a logarithmic layer with a lower slope than that corresponding to the von
Kármán constant, however, can be observed in both the LES and the experiment. The
slope predicted by the LES is also in good agreement with the experimental result.
The spanwise velocity profile normalized by the wall velocity in outer coordinates
(y is normalized by the thickness of the spanwise boundary layer, defined as the
location where W = 0.01Ws) agrees fairly well with the experimental data, given the
uncertainty in determining the leading edge of the plate in the calculation, and the
difference in Reynolds number and configuration (it will be shown later that the
different wall velocity should not affect this comparison too significantly).

In figure 6 the resultant velocity Qr and the mean spanwise velocity profiles in
the recovery region are compared with the experimental measurements of DJ90. To
circumvent the uncertain location of the trailing edge in the LES, three experimental
profiles that bracket the LES location are shown. In the experiments, Q+

r was found
to collapse on a logarithmic layer; the LES data follow this trend as well. The LES
spanwise velocity profile agrees well with experiments in the outer layer. Near the
wall, the differences are consistent with the Reynolds number difference, and with the
smoother transition between the fixed and moving plates in the calculation.

Figure 7 shows the comparison of the skin-friction coefficients, cf,x = 2τw,x/ρU
2∞

and cf,z = 2τw,z/ρU
2∞, downstream of the moving plate between the simulation and the

DJ90 experiment. Although a 30% difference is observed between the cf,x obtained
from the simulations and the experimental data, this difference can be attributed to
the large disparity in the Reynolds numbers, which in the experiment was six times
higher than in the simulation. In 2DTBLs, cf,x can be approximated by

cf,x ≈ 0.02Re
−1/6
δ (3.1)
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(White 1991). If the experimental cf,x is multiplied by (Reδ,exp/Reδ,LES )1/6 to reduce
the Reynolds-number dependence of the results, in fact, the agreement is quite good.
The figure also confirms that the medium and fine meshes give grid-converged results.
The transverse skin-friction coefficient is in good agreement with the experiment, with
no Reynolds-number correction. As will be shown later, the spanwise component of
velocity behaves like an independent Stokes layer, decoupled from the streamwise di-
rection. The similarity of the W/Ws profiles results in Reynolds-number independence
of the spanwise component.

Although the experimental flow conditions were not matched exactly, so that
a direct comparison between LES and experiments could not be carried out, we
have tried in this section to validate the simulation results. It has been shown
that the grid resolution is sufficiently fine that first and second moments are not
affected by insufficient resolution. In the two-dimensional region the LES is in very
good quantitative agreement with the reference DNS data. On the moving plate,
the experiment by Lohmann (1976) and the LES have differences in configuration,
Reynolds number and wall velocity; nonetheless, the qualitative changes observed in
the experiment are also present in the LES data. In the recovery region, collapse of
the resultant velocity onto the experimental data is observed, and agreement with
the experimental skin-friction coefficient is achieved if a correction for the Reynolds-
number difference is performed. Away from the wall, the spanwise velocity also agrees
well with the experimental data; near the wall, differences may be due to the smooth
transition between the moving section and the stationary one in the calculation, as
well as to Reynolds number effects.

3.2. Mean flow

Figure 8 shows the streamwise variation of the skin-friction coefficients over the
entire domain for the three cases. Sharp changes occur at the moving wall junctions.
Immediately after the shear is applied cf,x exhibits a sharp drop that amounts to
11% for the LS case and 33% for the HS case. While these magnitudes depend
on the function used to match the moving wall to the two-dimensional boundary
layer, a similar drop in the wall stress was reported by Coleman et al. (1996) in
the DNS of a shear-driven boundary layer in a channel. They observed a drop of
10% in the stress for a wall-to-centreline velocity ratio in the channel of 0.5. Also,
they indicate that higher shear produces a larger wall-shear reduction. As the flow
develops on the moving plate, cf,x starts increasing again; the spanwise motion of the
wall supplies additional energy to the flow, whose Reynolds number increases. At the
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trailing edge of the plate a new drop is observed, followed by a re-adjustment to the
two-dimensional value.

The magnitude of the spanwise skin-friction coefficient, on the other hand, increases
as soon as the shear at the wall is applied, goes through a short transient and then
settles to a nearly constant value, an indication that a collateral state is approached.
If, following L76, τw,z is made dimensionless by ρU∞Ws/2 (for the HS case, this does
not change its value, for the LS calculation this scaling is indicated by the circles
in the figure) the profiles for both cases are much closer to each other, indicating
that the transverse component may be self-similar with respect to the transverse wall
velocity. This issue will be examined further later.

Figure 9 shows the mean U and W velocity profiles at several locations on the
moving plate and in the recovery region for the HSM case. Lohmann (1976) observed
a deficit in the axial mean velocity profile near the centre of the transverse boundary
layer that moves outward as the transverse boundary layer grows. This effect is also
observed in the present simulation, although not as pronounced as in the experiment,
perhaps because of the lower transverse shear in the simulation. The effect is, in fact,
more prominent for the higher shear case. Any significant change in U due to the
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imposition of spanwise shear can only occur indirectly due to changes in the Reynolds
shear stress 〈u′v′〉. It can, therefore, be speculated that the structure of 〈u′v′〉 must be
changed in this region. This issue will be further discussed in the next subsection.

The hodograph plots (Johnston 1960) of W/Ws and 1−U/U∞ −W/Ws vs. U/U∞
are shown in figures 10 and 11 for the two shear cases. Notice that in figure 11
the straight dotted line corresponds to the two-dimensional state with W = 0, and
the horizontal axis to the collateral condition (U/U∞ + W/Ws = 1). Both figures
reveal that the boundary layer at the end of the moving plate is moving towards
the near-equilibrium collateral condition indicative of the flow having fully turned.
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This condition has not, however, been reached in the present simulation, while both
Driver & Hebbar (1987) and Lohmann (1976) achieved it in their experiments. Near
the wall, where W ' Ws and U ' 0, the relative velocity vector with respect to the
wall velocity W − s tends to the same slope as the calculated surface-flow angle,
representing a region of nearly constant flow angle. The profiles for x/δ∗r > 104 have
nearly the same slope near the wall, which implies that similarity on the moving
wall may hold if expressed in terms of the velocity relative to the moving wall,

Qr =
√
U2 + (W −Ws)2 and the resultant friction velocity Qτ defined previously.

The relative velocity Qr is shown in figure 12 in semi-logarithmic coordinates. For
the LS case, the velocity profiles collapse very well on a logarithmic region with the
same slope as the two-dimensional boundary layer, albeit shifted slightly upwards.
For the HS case, on the other hand, the logarithmic region has a lower slope, and
no collapse is observed. The decrease of the slope of the logarithmic layer was
also observed by Bissonnette & Mellor (1974) in their experiment, and by several
researchers in other three-dimensional flows (Pierce & McAllister 1983a, b, c; Moin et
al. 1990). The better collapse for the LS case is due to the fact that in this case the
flow is closer to the collateral state, as also indicated by the constant value of the
spanwise skin friction on the downstream part of the moving section.
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Figure 13 shows mean transverse-velocity profiles for the two shear cases. Near
the wall, the velocity distribution progresses rapidly towards an asymptotic state,
the shape of the profiles for y/δ∗ < 0.5 becoming essentially invariant towards the
end of the moving plate, as also observed by L76. In the outer regions, the velocity
distribution is far from an asymptotic state, as evidenced by the continuing growth
of the transverse boundary layer and the change in shape of the velocity profile with
downstream distance along the moving wall. Downstream of the moving plate, the
mean W velocity close to the wall decays rapidly, while away from the wall, similar
to the U velocity, it diffuses out very slowly. Comparison of the profiles at the two
different surface speeds indicates that they are self-similar, and independent of the
surface-to-free-stream velocity ratio. This indicates that the W velocity is decoupled
from, or very weakly coupled to, the streamwise development.

This similarity of the spanwise velocity profiles is also evidenced in the transverse-
boundary-layer displacement thickness, defined as

δ∗z =

∫ ∞
0

W (y)

Ws

dy, (3.2)

and shown in figure 14. Near the upstream junction, where the flow first encounters
the moving wall, δ∗z undergoes a rapid growth; after a short adjustment distance,
however, the growth rate settles to a power law proportional to x1/2. Lohmann (1976)
remarked that this growth rate is identical to the 1

2
power at which Antonia & Luxton

(1971) observed the influence of a smooth- to rough-wall boundary-condition change
propagate into an existing boundary layer. The x1/2 behaviour can also be associated
with a diffusive process, similar to the δ ∼ t1/2 behaviour observed for the laminar
Stokes layer, for instance.

To clarify further this issue, the terms in the spanwise momentum equation were
examined. Within the boundary-layer assumption, this equation reads

0 = −
(
∂UW

∂x
+
∂VW

∂y

)
+ ν

∂2W

∂y2
− ∂〈v′w′〉

∂y
. (3.3)

Figure 15 shows the behaviour of these terms for the HSM case in the middle
of the moving plate. The advection is dominated by the x-derivative; the viscous
diffusion and 〈v′w′〉 Reynolds stress terms are particularly high at the junctions,
but remain significant all along the moving plate. At the location shown, a subtle
balance governs the momentum transport. Very near the wall (y/δ∗r < 0.1) advection
and viscous diffusion are the only non-zero terms. Then, for y/δ∗r < 0.5, viscous
diffusion and turbulent diffusion nearly balance, and the advection term is zero.
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Finally, in the outer region y/δ∗r > 0.5, advection gives a significant contribution,
and balances the total diffusion, the sum of turbulent and viscous. Throughout most
of the layer the advection term is nearly constant, and balances a combination of
viscous and turbulent diffusion; the diffusion mechanism that causes the x1/2 growth
of the displacement thickness, therefore, appears to be due to an effective viscosity
ν + νE,z , where νE,z = −〈v′w′〉/(∂W/∂y). The important role of the turbulent diffusion
may partly explain the agreement of the spanwise skin friction with the experimental
data, independent of the Reynolds number difference.

3.3. Second moments

To understand better the phenomena that occur in the shear-driven boundary layer,
consider the transport equation for the large-scale Reynolds stresses Rij = 〈u′iu′j〉:

∂Rij

∂t
+Uk

∂Rij

∂xk
= Pij − Eij +Dij +Πij (3.4)

where

Pij = −
(
Rik

∂Uj

∂xk
+Rjk

∂Ui

∂xk

)
, (3.5)

Eij = 2ν

〈
∂u′i
∂xk

∂u′j
∂xk

〉
−
〈
τik
∂u′j
∂xk

+ τjk
∂u′i
∂xk

〉
, (3.6)

Dij =
∂

∂xk

[
ν
∂Rij

∂xk
− 〈u′iu′ju′k〉+

〈
τjku

′
i + τiku

′
j

〉]
, (3.7)

Πij = −
〈
u′i
∂p′

∂xj
+ u′j

∂p′

∂xi

〉
, (3.8)

are the production, dissipation, diffusion (viscous and turbulent) and velocity–
pressure-gradient terms respectively (Speziale 1991). The dissipation and turbulent
diffusion consist of two parts: a large-scale and an SGS contribution. The transport
equation for the resolved turbulent kinetic energy, K = 〈u′iu′i〉/2 can be obtained by
contracting equation (3.4) for i = j and multiplying by one half.

Profiles of the Reynolds stresses 〈u′iu′j〉 at several locations are shown in figure 16.
In the two-dimensional region, the expected distribution is obtained: 〈u′2〉 is the most
significant of the normal stresses, 〈u′v′〉 the only non-zero shear stress. As the wall
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motion is applied, 〈u′v′〉 decreases significantly (figure 16d). Moin et al. (1990) and
Coleman et al. (1996) also observed a similar decrease in their DNS of temporally
developing three-dimensional channel flows; Moin et al. (1990) attributed it to changes
in the pressure–strain correlation, whereas Sendstad & Moin (1992) and Coleman et
al. (1996) related it to the structural features of the flow, namely the fact that the
spanwise shear tears the streaks apart, thereby modifying their interaction with the
near-wall vortical structures. The data by Coleman et al. (1996), in particular, show
that the streaks first break down into shorter pieces, then align themselves with the
direction of the wall stress, and finally coalesce to re-take their elongated shape. In
the present calculation a similar behaviour is observed (figure 17).

Based on the results of their numerical experiments, Coleman et al. (1996) also
conjectured that the shear imposed at the wall does not affect directly the near-wall
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vortical structures, but only the streaks. The Reynolds stress is, therefore, reduced
by the reduction of the interaction between streaks and vortical structures, rather
than by a modification of the vortical structures per se. In the present study even the
outer structures appear to be significantly modified. Figure 18 shows a visualization
of the outer-layer vortical structures via low-pressure iso-surfaces, as well as contours
of the enstrophy on the wall. In the two-dimensional region both quasi-streamwise
vortices and arches can be observed. Following the imposition of the spanwise motion
(x/δ∗r ' 70), the streaky structure of the viscous shear layer becomes less well-defined.
The disturbance has to propagate a finite distance away from the wall, and by
x/δ∗r ' 90 even the outer-layer vortical structure is affected, and significantly fewer
structures are detected. Further downstream, new vortical structures are generated at
the wall and convected towards the outer layer. The quasi-streamwise vortices are
now oriented in the direction of the wall stress, at an angle of approximately 50◦ to
the x-direction. Similar conclusions can be reached by examining enstrophy surfaces
(not shown), which highlight the near-wall structures better than the pressure (which
tends to isolate the outer eddies).

The propagation into the outer layer of the disturbance introduced at the wall can
also be seen in the contours of the Reynolds shear stress 〈u′v′〉, shown in figure 19.
The shear stress also begins decreasing shortly after the motion is imposed, and the
perturbation reaches the outer flow at x/δ∗r ' 90.

The decrease of 〈u′v′〉 affects directly the production of 〈u′2〉, P11 ' −2〈u′v′〉∂U/∂y
(since ∂U/∂x ' 0), which also decreases, as shown in figure 20. At the same time, the
secondary stress 〈v′w′〉 appears (figure 16f). A significant mechanism for its generation
is the production term P23 = −〈u′v′〉∂W/∂x, figure 21.

Due to the growth of the secondary Reynolds stress 〈v′w′〉, the production of
〈w′2〉, P33 ' −2〈v′w′〉∂W/∂y, becomes very large (figure 22), especially near the
wall, where 〈w′2〉 begins to increase. At this streamwise position the production of
〈w′2〉 is larger than that of 〈u′2〉, and the peak 〈w′2〉 is three times its equilibrium
two-dimensional value (figure 16c). In the near-wall region 〈w′2〉 > 〈u′2〉 > 〈v′2〉, while
away from the wall, where the fluid has not yet been disturbed, 〈u′2〉 > 〈w′2〉 > 〈v′2〉,
as in the two-dimensional case.

The wall-normal Reynolds stress 〈v′2〉 is not as strongly affected throughout the
flow: as the perturbation is imposed, a small reduction of 〈v′2〉 can be observed.
Its level, however, is generally increased towards the end of the plate as the flow
approaches a collateral equilibrium state at a higher Reynolds number.

The budgets of 〈u′2〉 and 〈w′2〉 (figures 20 and 22) indicate that the velocity–pressure-
gradient term plays a minor role in this exchange of energy between components,
which is mainly driven by changes in the production. This confirms a conjecture by
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Figure 20. 〈u′2〉 Reynolds-stress budgets normalized by U∞ and δ∗. , production; ,
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Figure 21. 〈v′w′〉 Reynolds-stress budgets normalized by U∞ and δ∗. , production; ,
dissipation; , diffusion; , velocity–pressure-gradient. From top to bottom, x/δ∗r = 62,
98, 154 and 185. Each set of curves is shifted downwards by 0.02 units for clarity.
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Figure 22. 〈w′2〉 Reynolds-stress budgets normalized by U∞ and δ∗. , production; ,
dissipation; , diffusion; , velocity–pressure-gradient. From top to bottom, x/δ∗r = 62,
98, 154 and 185. Each set of curves is shifted downwards by 0.08 units for clarity.

Durbin (1993). A significant decrease of the magnitude of the dissipation of 〈u′2〉 is
observed near the wall (consistent with the findings of Coleman et al. 1996); as a
consequence, the diffusion at the wall decreases. Furthermore, to balance the decrease
in production, the diffusion (which in the two-dimensional boundary layer changes
sign twice) remains positive or near zero throughout the boundary layer.

Proceeding further along the plate, the streaks re-form (figure 17) and become
elongated again. Due to the increased turbulence Reynolds number, they also appear
thinner in outer coordinates. The fact that they are aligned in the direction of the
wall stress, forming an angle of approximately 50◦ with the streamwise direction, is
the reason for the very severe grid resolution requirements encountered in the present
simulation, which had to be significantly refined in the streamwise direction in order
to resolve the streaks over the moving surface.

Towards the trailing edge of the plate, in the quasi-collateral region, 〈u′2〉 has
nearly regained its two-dimensional value, although it remains smaller than 〈w′2〉.
The budgets of 〈u′2〉 and 〈w′2〉 recover shapes similar to those observed in the
equilibrium, two-dimensional, boundary layer, although at much higher amplitudes.
However, normalization by either the local Qτ or its streamwise component, uτ,x, fails
to collapse the data on the equilibrium curves. The fact that the length of the plate
was insufficient to achieve a fully collateral condition may play a role in this.

On the moving plate 〈v′w′〉 continues to increase, due to increased production,
and eventually becomes comparable to 〈u′v′〉. As often observed in three-dimensional
flows, the secondary shear 〈u′w′〉 becomes larger than either 〈u′v′〉 or 〈v′w′〉. This term,
however, does not contribute significantly to the production of any of the Reynolds
stresses, except perhaps very near the trailing edge, where ∂W/∂x is significant (and
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negative) and ∂W/∂y becomes positive, leading to a region of negative production of
〈w′2〉 near the wall.

Behind the trailing edge, phenomena similar to those observed at the leading edge
occur: the streaks break up (figures 17 and 23) and form again, aligned with the
wall stress (now returning towards the streamwise direction). As a consequence, 〈u′v′〉
decreases slightly, as does the production of 〈u′2〉. The production of 〈w′2〉 becomes
negative, so that dissipation is balanced by the velocity–pressure-gradient term, and
the spanwise Reynolds stress decays rapidly. The production of 〈v′w′〉 also becomes
negative near the wall, since the spanwise flow decelerates strongly (∂W/∂x < 0).
This results in a very rapid decay of 〈v′w′〉, which also changes sign in the near-wall
region due to the negative P23.

Profiles of the turbulent kinetic energy and of the structure parameter a1 are
shown in figure 24. Despite the growth of 〈w′2〉, immediately after the leading edge
of the plate K decreases from its two-dimensional value, consistent with the findings
of Moin et al. (1990) and Coleman et al. (1996). The present calculation extended
into the quasi-collateral region, in which K grows again and becomes larger than
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in the equilibrium case; it decreases again after the trailing edge to return to its
two-dimensional equilibrium value.

The structure parameter a1 decreases near the wall immediately after the plate
motion is started. The lower value of a1 indicates that the boundary layer is less effi-
cient in extracting shear stress from a given amount of turbulent kinetic energy. The
reciprocal point of view can also be argued: perturbed boundary layers, which have
additional production terms, are more efficient at generating turbulent kinetic energy
from a given shear stress. This result is consistent, both quantitatively and qualita-
tively, with that of Coleman et al. (1996) in the shear-driven channel calculations,
and with the high-spanwise-pressure-gradient case calculated by Moin et al. (1990)
(in their baseline case the three-dimensional effects on a1 were not as pronounced).
These studies, however, concentrated on the initial stages of the response of the flow
to the perturbation, and did not observe the return to the equilibrium value that we
measured in the quasi-collateral region. A similar decrease is observed after the wall
motion is ended, in the recovery region behind the moving plate.

The reduction of a1 has been observed in several three-dimensional flows, both
pressure driven (for instance, Bradshaw & Pontikos 1985; Anderson & Eaton 1989)
and shear driven (Coleman et al. 1996). Since the net shear stress and the turbulent
kinetic energy are invariant with respect to coordinate rotation in a plane parallel
to the wall, Sendstad & Moin (1992) argued that this reduction in a1 is not due
to the rotation of the stress tensor or the strain vector, but to structural changes
of turbulence due to three-dimensionality. Eaton (1992) explained it as the result of
changes in the flow structure near the wall, which was hypothesized to be due to the
crossflow decreasing the number of low-speed streaks and stress-producing burst–
sweep mechanisms, as also claimed by Sendstad & Moin (1992). We also observe a
decrease of the streak strength, as shown above. a1, however, is also reduced in cases
in which an equilibrium flow is subjected to a sudden perturbation, such as a flat-plate
boundary layer subjected to an adverse (Spalart & Watmuff 1993) or to a favourable
pressure gradient (Piomelli, Balaras & Pascarelli 2000). The decrease in a1 may have
two causes: inherent three-dimensionality in the flow (such as in the equilibrium
Ekman layer calculated by Wu & Squires 1997), and non-equilibrium effects. In our
calculations the reduction of a1 appears to be associated with the response of the
turbulence to the perturbation, rather than to three-dimensional effects per se, as
indicated by the fact that, in the three-dimensional equilibrium region, a1 recovers its
two-dimensional value.

The budget of K is shown in figure 25. The significant decrease of the produc-
tion term −2〈u′v′〉∂U/∂y that follows the beginning of the motion of the plate is
not initially accompanied by a corresponding increase of −2〈v′w′〉∂W/∂y; initially
(x/δ∗r < 90), therefore the production of K decreases. As the secondary stress 〈v′w′〉
builds up, however, the production of K increases and by x/δ∗r ' 98 it is larger than
in the two-dimensional boundary layer. The dissipation also decreases in that region,
the decrease being more significant very near the wall, less so in the buffer region.
The diffusion term, which in the two-dimensional boundary layer changes sign twice,
in this region remains positive through the buffer and outer regions, to make up
for the production deficit. After the initial region in which the production decreases,
and the dissipation increases away from the wall but decreases in the inner layer, all
the terms in the turbulent kinetic energy budget increase on the moving plate; their
shape, however, is more similar to that of equilibrium two-dimensional boundary
layers, reflecting the approach of collaterality on the plate.

As mentioned in the Introduction, Durbin (1993) proposed a Reynolds stress
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Figure 25. Turbulent kinetic energy budgets normalized by U∞ and δ∗r . , production; ,
dissipation; , total diffusion (turbulent, SGS, pressure and viscous). From top to bottom,
x/δ∗r = 62, 98, 154 and 185. Each set of curves is shifted downwards by 0.08 units for clarity.

model in which the ε-equation was modified to take into account the increase in the
rate of energy dissipation observed, for instance, by Moin et al. (1990) in 3DTBLs.
The increase of ε around y+ ' 10 observed by Moin et al. (1990), was, however,
accompanied by a reduction of ε close to the wall. We observe a similar trend: the
dissipation at the wall decreases but it takes some time for the decrease to spread
into the outer layers. There is a local maximum for the ε at a y+ ∼ 10 and a local
minimum around y+ ' 5 similar to Moin et al. (1990). The turbulent kinetic energy
dissipation obtained from the present calculation follows similar trends. However,
significant modifications in the diffusion and transport terms are also observed.

The Reynolds-stress distribution on the moving plate and in the recovery region
is quite complex, and is governed by a combination of competing mechanisms. It
should not be surprising, therefore, that simple eddy-viscosity-type turbulence models
for the Reynolds-averaged Navier–Stokes (RANS) equations have not been successful
in modelling flows of this type. As an illustration of the difficulties that this type of
models encounters, in figure 26(a) the difference between the mean flow strain-rate
angle, γg , and the Reynolds shear-stress angle, γτ, is shown. The two angles are defined
as

γg = tan−1 ∂W/∂y

∂U/∂y
, γτ = tan−1 〈v′w′〉

〈u′v′〉 . (3.9)

In an equilibrium boundary layer, these two angles are equal. Immediately after the
leading and trailing edges of the moving section, the Reynolds-shear-stress vector
points in a different direction than the strain-rate vector, especially near the wall.
As the flow returns towards a three-dimensional or two-dimensional equilibrium, this
difference is reduced. The shear-stress vector always lags the strain-rate vector. Far
away from the wall, these vectors become aligned and point in the mean flow direction.
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Eddy-viscosity models, furthermore, assume an isotropic eddy viscosity. Figure 26(b)
shows the ratio of the spanwise and streamwise components of the eddy viscosity,
defined as

νE,x = − 〈u
′v′〉

∂U/∂y
, νE,z = − 〈v

′w′〉
∂W/∂y

. (3.10)

The eddy viscosity is strongly anisotropic in the non-equilibrium regions. This be-
haviour is particularly marked in the recovery region, in which ∂W/∂y goes through
zero (resulting in the discontinuities observed in the figure for the third and fourth
profiles). This behaviour is very difficult to predict using RANS-type models. Ölçmen
& Simpson (1995) report a similar behaviour for their pressure-driven boundary layer
and show a discontinuity in their eddy-viscosity profiles.

4. Summary and conclusions
A shear-driven spatially developing three-dimensional turbulent boundary layer was

studied by large-eddy simulation. The results compare fairly well with the available
experimental data. This was the first investigation of spatially developing flows in
which the near-wall structure of the flow could be studied, since previous experi-
mental work was limited to outer-layer measurements, and numerical simulations
were performed in temporally developing flows. Furthermore, both the response of
the turbulence to the perturbation and its return to equilibrium are investigated.

The mean flow behaviour is found to be drastically changed when compared to
the two-dimensional case. Most flow turning is observed within y/δ∗ ≈ 1. The mean
spanwise velocity profiles are self-similar when non-dimensionalized with respect to
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the wall velocity, Ws: W behaves like an independent Stokes layer; in fact the
growth rate of the transverse boundary layer, δ∗z ∼ x1/2 is similar to that of the
laminar Stokes layer, δ ∼ t1/2. Except very near the wall, an equilibrium is established
between advection and the sum of turbulent and viscous diffusion.

On the moving wall a collateral condition of the flow is approached. The kinematic
condition of collaterality forces the ratio of cf,x and cf,z , and hence the surface-flow
angle, to remain constant. There is a large drop in the wall shear stress in the axial
direction, while the secondary wall shear stress in the spanwise direction increases.
The spanwise skin friction also exhibits self-similarity, for the wall velocities examined,
when normalized by U∞Ws.

In the near-wall region the flow accelerates strongly on the moving plate, and
mildly downstream of it. This flow acceleration causes velocity deficits in the upper
regions that slowly move upwards downstream, similar to the experimental findings
of Lohmann (1976). On the moving wall, the law of the wall is observed to hold
when expressed in terms of the resultant velocity relative to the moving plate and
the resultant skin friction. However, the slope of the logarithmic layer decreases with
increasing wall-to-free-stream speed ratio.

The flow structures are also drastically changed in the presence of three-
dimensionality. The streaky structures in the viscous wall layer are torn by the im-
posed wall shear, causing an immediate reduction of the Reynolds shear stress 〈u′v′〉.
Similar observations were made by Sendstad & Moin (1992) for pressure-driven chan-
nel flow, and by Coleman et al. (1996) for temporally developing channel flow. In
addition, we observed that the outer-layer vortical structures are also disrupted, some
distance downstream of the plate beginning, as the disturbance propagates away from
the wall. On the moving plate new, more energetic, structures are generated, which
align themselves with the direction of the wall shear. Behind the trailing edge of the
moving plate similar phenomena take place.

Following the drop in 〈u′v′〉, 〈u′2〉 and K also decrease close to the junctions of the
moving plate. As new eddies are formed in the direction of the wall shear the secondary
Reynolds stress 〈v′w′〉 increases, supplying an additional production term for 〈w′2〉,
which becomes larger than 〈u′2〉. The turbulent kinetic energy also increases above
its two-dimensional equilibrium value. The structure parameter a1 decreases below its
two-dimensional value following the imposition of the wall motion, but then recovers
its equilibrium value. This indicates that the reduction of the structure parameter
may be due more to the effects of the perturbation away from equilibrium than to
three-dimensional effects per se. Another decrease of 〈u′v′〉, a1 and K follows the
trailing edge of the moving plate, followed by recovery of the two-dimensional values.

The changes in the normal Reynolds stresses and turbulent kinetic energy are
mostly due to changes in the production; the dissipation responds more slowly to the
imposition of the perturbation, except very near the wall. The pressure only plays
a minor role. In the budgets of K and 〈u′2〉, the diffusion term changes sign under
non-equilibrium conditions in order to account for the different adjustment times
of production and dissipation. For the shear stresses 〈u′v′〉 and 〈v′w′〉, production
is balanced by the velocity–pressure gradient for y+ < 15. Although the dissipation
of 〈u′v′〉 and 〈v′w′〉 can be neglected, the dissipation of 〈u′w′〉 is significant and
non-negligible. This implies that an isotropic assumption for the dissipation tensor is
violated in such flows.

The stress angle is found to be lagging the strain angle, as in the experiments.
Near the wall there is considerable difference between the two, confirming the known
anisotropy of the eddy viscosity: νE,x 6= νE,z .
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